翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

modular lambda function : ウィキペディア英語版
modular lambda function
In mathematics, the elliptic modular lambda function λ(τ) is a highly symmetric holomorphic function on the complex upper half-plane. It is invariant under the fractional linear action of the congruence group Γ(2), and generates the function field of the corresponding quotient, i.e., it is a Hauptmodul for the modular curve ''X''(2). Over any point τ, its value can be described as a cross ratio of the branch points of a ramified double cover of the projective line by the elliptic curve \mathbb/\langle 1, \tau \rangle, where the map is defined as the quotient by the () involution.
The q-expansion, where q = e^ is the nome, is given by:
: \lambda(\tau) = 16q - 128q^2 + 704 q^3 - 3072q^4 + 11488q^5 - 38400q^6 + \dots.
By symmetrizing the lambda function under the canonical action of the symmetric group ''S''3 on ''X''(2), and then normalizing suitably, one obtains a function on the upper half-plane that is invariant under the full modular group SL_2(\mathbb), and it is in fact Klein's modular j-invariant.
==Modular properties==
The function \lambda(\tau) is invariant under the group generated by〔Chandrasekharan (1985) p.115〕
: \tau \mapsto \tau+2 \ ;\ \tau \mapsto \frac \ .
The generators of the modular group act by〔Chandrasekharan (1985) p.109〕
: \tau \mapsto \tau+1 \ :\ \lambda \mapsto \frac \, ;
: \tau \mapsto -\frac \ :\ \lambda \mapsto 1 - \lambda \ .
Consequently, the action of the modular group on \lambda(\tau) is that of the anharmonic group, giving the six values of the cross-ratio:〔Chandrasekharan (1985) p.110〕
: \left\lbrace , \frac, \frac, \frac, 1-\lambda } \right\rbrace \ .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「modular lambda function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.